Abstract
In the iron arsenide compound BaFe2As2, superconductivity can be induced either by a variation of its chemical composition, e.g., by replacing Fe with Co, or by a reduction of the unit-cell volume through the application of hydrostatic pressure p. In contrast to chemical substitutions, pressure is expected to introduce no additional disorder into the lattice. We compare the two routes to superconductivity by measuring the p dependence of the superconducting transition temperature Tc of Ba(Fe(1-x)Cox)2As2 single crystals with different Co content x. We find that Tc(p) of underdoped and overdoped samples increases and decreases, respectively, tracking quantitatively the Tc(x) dependence. To clarify to which extent the superconductivity relies on distinct structural features we analyze the crystal structure as a function of x and compare the results with that of BaFe2As2 under pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.