Abstract
We report measurements of Shubnikov–de Haas oscillations in the giant Rashba semiconductor BiTeI under applied pressures up to ∼2 GPa. We observe one high frequency oscillation at all pressures and one low frequency oscillation that emerges between ∼0.3–0.7 GPa indicating the appearance of a second small Fermi surface. BiTeI has a conduction band bottom that is split into two sub-bands due to the strong Rashba coupling, resulting in a ‘Dirac point’. Our results suggest that the chemical potential starts below the Dirac point in the conduction band at ambient pressure and moves upward, crossing it as pressure is increased. The presence of the chemical potential above this Dirac point results in two Fermi surfaces. We present a simple model that captures this effect and can be used to understand the pressure dependence of our sample parameters. These extracted parameters are in quantitative agreement with first-principles calculations and other experiments. The parameters extracted via our model support the notion that pressure brings the system closer to the predicted topological quantum phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.