Abstract

The highly colored pyridinium (P{sup +}) and cobaltocenium (C{sup +}) iodides are charge-transfer salts by virtue of the new electronic absorption bands that follow Mulliken theory. X-ray crystallography establishes the relevant interionic separation and steric orientation of the cation/anion pairs P{sup +}I{sup {minus}} and C{sup +}I{sup {minus}} constrained for optimum charge-transfer interaction in the crystal lattice. Spectral comparisons of the charge-transfer (CT) transitions by absorption (solution) and by diffuse reflectance (solid-state) measurements reveals the commonality of contact ion pairs (CIP) in aprotic nonpolar solvents (dichloromethane) with those extant in crystalline charge-transfer salts. As such, the compression of the charge-transfer salts P{sup +}I{sup {minus}} in the solid state by the application of pressures up to 140 kbar leads to unusual red shifts of the CT bands indicative of the dominance of destabilizing charge-transfer interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.