Abstract

Infrared spectra of the normal connective, the normal epithelial, and the malignant epithelial tissues of cervix from seven patients have been measured as a function of pressure. Extremely high quality spectra of these tissue samples have been obtained. Consequently, structural differences at the molecular level among these three types of cervical tissues have been extracted from their pressure-tuning infrared spectra in the regions of the symmetric and antisymmetric stretching modes of phosphodiester groups, the C-O stretching mode, the CH2 bending mode, and the amide I mode. Significant differences in many features between the infrared spectra of the normal and the malignant cervical tissues and cells suggest that the infrared spectra of exfoliated cells and the biopsy of cervical tissues may be used in rapid evaluation of cervical cancer or in screening of large-volume normal cervical specimens. The infrared spectrum of the normal connective tissue of cervix in the frequency region 950 to 1100 cm−1 is similar to that of the malignant cervical tissue and cells. Therefore, if only this region of the spectrum is examined, the normal connective tissue will be misinterpreted as malignant tissue. However, the normal connective tissue can be differentiated unambiguously from the malignant tissue or the normal epithelial tissue by the infrared spectra in the frequency region 1200 to 1500 cm−1, where several well-defined sharp bands are unique for the normal connective tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.