Abstract

The theory of ideal magnetohydrodynamic turbulence in cylindrical geometry is used to study the steady-state structure of a coronal loop. The pressure profile is derived from MHD equations by representing the velocity and magnetic fields as the superposition of Chandrasekhar-Kendall functions. Such a representation brings out the three-dimensional structure of the pressure in the coronal loop. The radial, azimuthal, and axial variations of the pressure for a constant density loop are discussed in detail. The pressure has an oscillatory behavior for different azimuthal angles at some radial positions. This study predicts more features in pressure than can be compared with the presently available observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call