Abstract

Abstract In this study, the pressure-sensitive paint (PSP) technique, specifically the mesoporous-particle-based PSP, was employed to compare rectangular cavities with varying length-to-depth ratios (L/D) and different trailing edge shapes under transonic conditions. By utilizing PSP, comprehensive and quantitative pressure data were obtained, enabling the simultaneous observation of surface flow field distribution. The results obtained using PSP were found to be consistent with those obtained from conventional pressure sensors. The study revealed that the pressure distribution within the cavities changed with increasing L/D, and cavities with different trailing edge shapes demonstrated a reduction in pressure at the bottom region. Furthermore, the comparison of results obtained through the oil flow method corroborated the PSP findings, indicating that a beveled or sawtooth-shaped trailing edge of the cavity induced air flow deflection, effectively disrupting the upstream shear flow structure and altering the pressure distribution at the cavityʼs bottom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call