Abstract

Surface pressure measurements were taken on a hemisphere-on-cylinder turret in a wind tunnel using pressure sensitive paint and fast response pressure transducers. Four different turret protrusion distances were tested to study the characteristics of the unsteady pressure field on the backside and wake of the turret. Proper orthogonal decomposition was used to identify the dominant spatial surface pressure modes acting on the turret in this parametric study. It was found that the further the turret protruded into the freestream flow, the more the surface pressure field became dominated by spanwise antisymmetric surface pressure distributions resulting from anti-symmetrical vortex shedding at a normalized frequency of approximately StD=0.2. For the case of the partial hemisphere, this anti-symmetrical vortex shedding was essentially absent, insinuating that at some protrusion distance, the surface pressure environment on the turret fundamentally changes. The normalized net force rms was calculated on the turret for each configuration. It was found that the greater the turret protrusion, the greater the net force acting in the spanwise direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call