Abstract
We describe the use of on-chip buckled-dome Fabry-Perot microcavities as pressure sensing elements. These cavities, fabricated by a controlled thin-film buckling process, are inherently sealed and support stable optical modes (finesse >103), which are well-suited to coupling by single-mode fibers. Changes in external pressure deflect the buckled upper mirror, leading to changes in resonance wavelengths. Experimental shifts are shown to be in good agreement with theoretical predictions. Sensitivities as large as ∼1nm/kPa, attributable to the low thickness (<2µm) of the buckled mirror, and resolution ∼10Pa are demonstrated. We discuss potential advantages over traditional low-finesse, quasi-planar Fabry-Perot pressure sensors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.