Abstract

An experimental study of the features of pressure relaxation in rapidly grown crystals of a diluted solid solution 3He–4He, at temperatures above 1.3 K, was performed. A cylindrical cell with capacitive pressure sensors at the ends was used for measurements. It was found that, when the helium crystals were grown at cooling rates ≳4 mK/s, the difference in pressure ΔP registered by the sensors at 1.3 K reached 2.4 bars. The ΔP value decreased with subsequent stepwise increase in temperature, but reached zero only after thorough annealing at the premelting temperatures. The kinetics of pressure changes at the sample ends at different temperatures was recorded. The results obtained were interpreted within the framework of the structural relaxation model based on the monovacancy diffusion mechanism. The proposed model made it possible to explain the dependence of ΔP on the time and temperature recorded in the experiment, as well as to determine the activation energy of the structural relaxation process and the diffusion coefficient of vacancies. The details of the vacancy model are described in the Appendix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call