Abstract

It is known that arteries in their natural position are always subject to a longitudinal stress. However, the effect of this strong longitudinal tension has seldom been addressed. In this paper, we point out that the traditional pulse wave velocity formulae considering only the circumferential elasticity fail to include all the important energies. We present a vigorous derivation of a pressure wave equation, the pressure wave equation with total energy, which considers all the important energies of the whole arterial system by treating the arterial wall and the blood as one system. Our model proposes that the energy transport in the main arterial system is primarily via the transverse vibration motion of the elastic wall. The final equation indicates that the longitudinal stress is essential and the high frequency phase velocity is related to the longitudinal tension along the arterial wall and its Young's shearing modulus. By applying this equation, we suggest that longitudinal elastic property is an important factor in hemodynamics and in the treatment of cardiovascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.