Abstract

It is well known that overload changes the mechanical properties of biological tissues and fasting changes the responsiveness of intestinal afferents. This study aimed to characterize the effect of overload on mechanosensitivity in mesenteric afferent nerves in normal and fasted Sprague-Dawley rats. Food was restricted for 7days in the Fasting group. Jejunal whole afferent nerve firing was recorded during three distensions, i.e., ramp distension to 80cmH2O luminal pressure (D1), sustained distension to 120cmH2O for 2min (D2), and again to 80cmH2O (D3). Multiunit afferent recordings were separated into low-threshold (LT) and wide-dynamic-range (WDR) single-unit activity for D1 and D3. Intestinal deformation (strain), distension load (stress), and firing frequency of mesenteric afferent nerve bundles [spike rate increase ratio (SRIR)] were compared at 20cmH2O and 40cmH2O and maximum pressure levels among distensions and groups. SRIR and stress changes showed the same pattern in all distensions. The SRIR and stress were larger in the Fasting group compared to the Control group (P < 0.01). SRIR was lower in D3 compared to D1 in controls (P < 0.05) and fasting rats (P < 0.01). Total single units and LT were significantly lower in Fasting group than in Controls at D3. LT was significantly higher in D3 than in D1 in Controls. Furthermore, correlation was found between SRIR with stress (R = 0.653, P < 0.001). In conclusion, overload decreased afferent mechanosensitivity in a stress-dependent way and was most pronounced in fasting rats. Fasting shifts LT to WDR and high pressure shifts WDR to LT in response to mechanical stimulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call