Abstract

Pressure profiles in a transverse detonation wave propagating in a plane-radial vortex chamber during continuous spin detonation of a mixture consisting of lignite, syngas, and air are measured by specially designed and fabricated high-frequency pressure sensors based on TsTS-19 piezo-ceramics. Pressure levels in the detonation wave front relative to the mean static pressure are determined. It is demonstrated that these levels decrease toward the combustor center (by a factor of 20 and lower) as the wave intensity (velocity) decreases. Pressure oscillations behind the wave front testify to a complex gas-dynamic pattern of the processes in the wave region. A chemical reaction region is detected behind the wave front; its length is approximately 8% of the period between the waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.