Abstract

Pressure drop and pressure gradient were measured in steady Newtonian and non-Newtonian flow through tapered tubes having angles of taper, alpha, between 0.5 degree and 1.25 degrees. Aqueous solutions of polyacrylamide, characterized as power law fluids, were used for the non-Newtonian flow measurements. These solutions had power law parameters similar in magnitude to those of blood. The pressure drop-flow rate data compared well with the predictions of a semi-empirical flow model over a large range of flow rates (Re alpha up to 10 for Newtonian flow and 5.7 for non-Newtonian flow). The pressure gradient increased with distance, z, into the taper as the radius decreased. The linear relationship between pressure gradient and z, derived by Oka (Biorheology, 10, 207-212, 1973) was found to be valid only when alpha z was small. For the tapered tubes examined here, agreement was confined to the region near the inlet. If higher order terms in alpha z were taken into account the agreement was extended further into the taper. However, under higher flow conditions, when the inertial losses are not negligible, the semi-empirical model provides much better estimates of pressure gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.