Abstract

Simulations of the flow past a rectangular cavity containing a model captive store are performed using a hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation model. Calculated pressure fluctuation spectra are validated using measurements made on the same configuration in a trisonic wind tunnel at Mach numbers of 0.60, 0.80, and 1.47. The simulation results are used to calculate unsteady integrated forces and moments acting on the store. Spectra of the forces and moments, along with correlations calculated for force/moment pairs, reveal that a complex relationship exists between the unsteady integrated forces and the measured resonant cavity modes, as indicated in the cavity wall pressure measurements. The structure of identified cavity resonant tones is examined by visualization of filtered surface pressure fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call