Abstract
Abstract Knowledge of the uncertainty of measurement of testing results is important when results have to be compared with limits and specifications. In the measurement of sound insulation following standards ISO 140-4 and 140-5 the uncertainty of the final magnitude is mainly associated to the average sound pressure levels L1 and L2 measured. However, the study of sound fields in enclosed spaces is very difficult: there are a wide variety of rooms with different sound fields depending on factors as volume, geometry and materials. A parameter what allows us to quantify the spatial variation of the sound pressure level is the standard deviation of the pressure levels measured at the different positions of the room. Based on the analysis of this parameter some results have been pointed out: we show examples on the influence of the microphone positions and the wall characteristics on the uncertainty of the final magnitudes mainly at the low frequencies regime. In this line, we propose a theoretical calculus of the standard deviation as a combined uncertainty of the standard deviation already proposed in the literature focused in the room geometry and the standard deviation associated to the wall vibrational field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.