Abstract

A variational method is adopted to investigate the properties of shallow impurity states near the interface in a free strained wurtzite GaN/AlxGa1-xN heterojunction under hydrostatic pressure and external electric field by using a simplified coherent potential approximation. Considering the biaxial strain due to lattice mismatch or epitaxial growth and the uniaxial strains effects, we investigated the Stark energy shift led by an external electric field for impurity states as functions of pressure as well as the impurity position, Al component and areal electron density. The numerical result shows that the binding energy near linearly increases with pressure from 0 to 10 GPa. It is also found that the binding energy as a function of the electric field perpendicular to the interface shows an un-linear red shift or a blue shift for different impurity positions. The effect of increasing x on blue shift is more significant than that on the red shift for the impurity in the channel near the interface. The pressure influence on the Stark shift is more obvious with increase of electric field and the distance between an impurity and the interface. The increase of pressure decreases the blue shift but increases the red shift.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call