Abstract
Density functional theory was used to study pressure-induced phase transitions of zircon to monazite in doped yttrium orthophosphate, Y1–хLaхPO4, for х = 0, 0.0625, 0.125. The pressures of the phase transition, the elastic moduli and the universal elastic anisotropy index were calculated. It was shown that with increasing lanthanum concentration in Y1–xLaxPO4, the transition pressure increases. According to the Birch–Murnaghan equation of state, this effect is associated with a decrease in the critical volume. The increased stability of the doped zircon phase compared to YPO4 is attributed to the more significant increase in the anisotropy and distortions of REO8 polyhedra and RE–O–P chains found for the optimized structures at critical volumes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.