Abstract

The ternary rare-earth metal fluoride CsEuF3 adopts an ideal cubic perovskite structure [ABX3] under ambient conditions. The B-cation site is occupied by the rare-earth Eu ion and EuF6 octahedra are formed. In the present study, magnetic susceptibility and synchrotron X-ray absorption spectroscopy (XAS) analysis at the Eu-L3 edge confirmed that Eu is in a divalent oxidation state under ambient conditions. Temperature-dependent magnetic susceptibility data revealed that the average Eu valence increased below 20 K due to a partial transition from the Eu2+ state to the Eu3+ state, thereby resulting in a mixed valence state with an average valence of +2.23. Direct evidence for valence fluctuation by the Eu ions in CsEuF3 was obtained using the high pressure high energy resolution fluorescence detection-XAS technique, where continuous changes in valence were observed from 2.15+ at ambient pressure up to 2.5+ at 10.5 GPa. These findings indicate the possibility of discovering interesting physical properties associated with valence instabilities by rare-earth metals in similar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.