Abstract

In multi-band superconductors as inter-metallic systems and heavy fermions, external pressure can reduce the critical temperature and eventually destroy superconductivity driving these systems to the normal state. In many cases this transition is continuous and is associated with a superconducting quantum critical point (SQCP). In this work we study a two-band superconductor in the presence of hybridization V . This one-body mixing term is due to the overlap of the different wave-functions. It can be tuned by external pressure and turns out as an important control parameter to study the phase diagram and the nature of the phase transitions. We use a BCS approximation and include both inter- and intra-band attractive interactions. For negligible inter-band interactions, as hybridization (pressure) increases we find a SQCP separating a superconductor from a normal state at a critical value of the hybridization V c . We obtain the behavior of the electronic specific heat close to the SQCP and the shape of the critical line as V approaches V c .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.