Abstract

Topological transition metal dichalcogenides (TMDCs) have attracted much attention due to their potential applications in spintronics and quantum computations. In this work, the structural and electronic properties of topological TMDCs candidate ZrTe2 are systematically investigated under high pressure. A pressure-induced Lifshitz transition is evidenced by the change of charge carrier type as well as the Fermi surface. Superconductivity is observed at around 8.3GPa without structural phase transition. A typical dome-shape phase diagram is obtained with the maximum Tc of 5.6K for ZrTe2 . Furthermore, the theoretical calculations suggest the presence of multiple pressure-induced topological quantum phase transitions, which coexists with emergence of superconductivity. The results demonstrate that ZrTe2 with nontrivial topology of electronic states displays new ground states upon compression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.