Abstract

The two major classes of unconventional superconductors, cuprates and Fe-based superconductors, have magnetic parent compounds, are layered, and generally feature square-lattice symmetry. We report the discovery of pressure-induced superconductivity in a nonmagnetic and wide band gap 1.95 eV semiconductor, Cu2I2Se6, with a unique anisotropic structure composed of two types of distinct molecules: Se6 rings and Cu2I2 dimers, which are linked in a three-dimensional framework. Cu2I2Se6 exhibits a concurrent pressure-induced metallization and superconductivity at ∼21.0 GPa with critical temperature (Tc) of ∼2.8 K. The Tc monotonically increases within the range of our study reaching ∼9.0 K around 41.0 GPa. These observations coincide with unprecedented chair-to-planar conformational changes of Se6 rings, an abrupt decrease along the c-axis, and negative compression within the ab plane during the phase transition. DFT calculations demonstrate that the flattened Se6 rings within the CuSe layer create a high density of states at the Fermi level. The unique structural features of Cu2I2Se6 imply that superconductivity may emerge in anisotropic Cu-containing materials without square-lattice geometry and magnetic order in the parent compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.