Abstract

The effect of high pressure on the structure of orthorhombic Mn3(VO4)2 is investigated using in situ Raman spectroscopy and X-ray powder diffraction up to high pressures of 26.2 and 23.4 GPa, respectively. The study demonstrates a pressure-induced structural phase transition starting at 10 GPa, with the coexistence of phases in the range of 10–20 GPa. The sluggish first-order phase transition is complete by 20 GPa. Importantly, the new phase could be recovered at ambient conditions. Raman spectra of the recovered new phase indicate increased distortion and as a consequence the lowering of the local symmetry of the VO4 tetrahedra. This behavior is different from that reported for isostructural compounds Zn3(VO4)2 and Ni3(VO4)2 where both show stable structures, although almost similar anisotropic compression of the unit cell is observed. The transition observed in orthorhombic Mn3(VO4)2 could be due to the internal charge transfer between the cations, which favors the structural transition at lower pressures and the eventual recovery of the new phase even upon pressure release in comparison to other isostructural compounds. The experimental equation of state parameters obtained for orthorhombic Mn3(VO4)2 match excellently with empirically calculated values reported earlier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.