Abstract

Organic solid-state luminescent materials exhibit numerous exciting photoelectric properties that are central to emergent organic light-emitting diodes, smart sensors, and data encryption. However, the luminescence of pure organic rotor-free materials has been afflicted with strong intermolecular π-π stacking interactions. Herein, an unprecedented pressure-induced emission enhancement (PIEE) is realized in a system of rigid planar pure polycyclic aromatics, i.e., truxene crystals. The emission intensity is enhanced 7-fold below 3.0 GPa with a photoluminescence quantum yield increased to 10.17% compared with the initial value of 1.78%, and the emission colors change from green (520 nm) to red (640 nm) within 11.8 GPa. Spectral characterizations and first-principles calculations reveal that the PIEE and piezochromism can mainly be attributed to the restricted intermolecular vibration and the decreased energy gap. Our findings enrich the PIEE mechanism and provide a new guideline for designing pressure-responsive luminescent materials in advancing their photoelectric applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.