Abstract

We utilized the pair distribution function method to characterize the pressure-induced polyamorphic transition in Ce60Al20Cu20 and Ce55Al45 metallic glass at room temperature. Using synchrotron high-energy x-ray diffraction we collected scattering information from a large Q-space coverage, which in turn gave a high resolution g(r) that provided accurate local structure information. We observed a sudden change in compressibility and the nearest neighbor distance at 3.50–6.32 GPa for Ce60Al20Cu20 and 2.20–6.89 GPa for Ce55Al45. The origin of the volume collapse seemed to be pressure-induced qualitative changes in bond shortening that corresponded to different coordination spheres. The polyamorphic transitions in these two systems from low-density glass (LDG) to high-density glass (HDG) are associated with local atomic rearrangements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call