Abstract
Great progress has been achieved in the research field of topological states of matter during the past decade. Recently, a quasi-1-dimensional bismuth bromide, Bi4Br4, has been predicted to be a rotational symmetry-protected topological crystalline insulator; it would also exhibit more exotic topological properties under pressure. Here, we report a thorough study of phase transitions and superconductivity in a quasihydrostatically pressurized α-Bi4Br4 crystal by performing detailed measurements of electrical resistance, alternating current magnetic susceptibility, and in situ high-pressure single-crystal X-ray diffraction together with first principles calculations. We find a pressure-induced insulator-metal transition between ∼3.0 and 3.8 GPa where valence and conduction bands cross the Fermi level to form a set of small pockets of holes and electrons. With further increase of pressure, 2 superconductive transitions emerge. One shows a sharp resistance drop to 0 near 6.8 K at 3.8 GPa; the transition temperature gradually lowers with increasing pressure and completely vanishes above 12.0 GPa. Another transition sets in around 9.0 K at 5.5 GPa and persists up to the highest pressure of 45.0 GPa studied in this work. Intriguingly, we find that the first superconducting phase might coexist with a nontrivial rotational symmetry-protected topology in the pressure range of ∼3.8 to 4.3 GPa; the second one is associated with a structural phase transition from monoclinic C2/m to triclinic P-1 symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.