Abstract
Pressure induced structural phase transition of mono-antimonides of lanthanum, cerium, praseodymium and neodymium (LnSb, Ln=La, Ce, Pr and Nd) has been studied theoretically using an inter-ionic potential with modified ionic charge which parametrically includes the effect of Coulomb screening by the delocalized f electrons of rare earth (RE) ion. The anomalous structural properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band and strong mixing of f states of Ln ion with the p orbital of neighbouring antimonide ion. All the four compounds are found to undergo from their initial NaCl (B 1) phase to body centered tetragonal (BCT) phase at high pressure and agree well with the experimental results. The body centered tetragonal phase is viewed as distorted CsCl structure and is highly anisotropic with c/ a=0.82. The transition pressure of LnSb compounds is observed to increase with decreasing lattice constant in NaCl phase. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln–Ln and Ln–Sb) distances at high pressure. The calculated values of elastic constants are also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.