Abstract

The electronic properties of defective graphene mono-sheet under external pressure were investigated. Density functional theory was implemented to investigate the band gap variations of defective graphene mono-layer under uniaxial systematic and symmetric stress and strain. Besides, the obtained band gap is more controllable compared to other techniques. The band-gap variations with pressure suggests that, upon applying pressure (stress and strain), a tunable band gap of pristine graphene mono layer and graphene with different orientations of Stone-Wales defects can be achieved. We also monitored the influence of applying external pressure on the work function of pristine graphene mono-layer and graphene with Stone-Wales defects. Our results demonstrated that the work function of pristine as well as Stone-Wales defected graphene mono sheet can be efficiently controlled by selecting a specific pressure value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.