Abstract

The stability of diamond under pressure and the structure of hypothetical high-pressure phases have been a controversial issue for a long time. “Will diamond transform under megabar pressures?” asked Yin and Cohen in the title of their paper [Phys. Rev. Lett. 50, 2006 (1983)] which attempted to predict an answer to this question 15 years ago. Before and after that, many other scientists tried to find the answer doing both modeling and experiments. However, the cubic structure of diamond seems to be experimentally stable up to the highest static pressures that the modern high-pressure technology can achieve. We addressed the problem by decreasing the contact area of pressurization instead of increasing the total load. Experimentally this can be easily done in indentation tests using a sharp diamond indenter. In addition to hydrostatic stresses, such a test creates shear stresses as well. Here deformations may be realized, which are either impossible or would require much higher pressures when utilizing only hydrostatic stresses. By coupling the indentation loading with micro-Raman spectroscopy, we were able to drive and monitor phase transformations in diamond. A very similar phenomenon can be observed by scratching a diamond with another diamond. Thus, phase transformations in diamond may in fact be a very common feature of wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.