Abstract

In situ high pressure single crystal X-ray diffraction study reveals that the quantum material CaMn2Bi2 undergoes a unique plane to chain structural transition between 2 and 3 GPa, accompanied by a large volume collapse. Puckered Mn-Mn honeycomb layer converts to quasi-one-dimensional (1D) zigzag chains above the phase transition pressure. Single crystal measurements reveal that the pressure-induced structural transformation is accompanied by a dramatic 2 orders of magnitude drop of resistivity. Although the ambient pressure phase displays semiconducting behavior at low temperatures, metallic temperature dependent resistivity is observed for the high pressure phase, as surprisingly, are two resistivity anomalies with opposite pressure dependences, while one of them could be a magnetic transition and the other originates from Fermi surface instability. Assessment of the total energies for hypothetical magnetic structures for high pressure CaMn2Bi2 indicates that ferrimagnetism is thermodynamically favored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.