Abstract

We have investigated the effect of reduced water activity on the pressure-stability of double-stranded DNA polymers, poly[d(A-T)] and poly[d(I-C)]. Water activity was modulated by the addition of ethylene glycol and glycerol. The ionic strength of the medium was such that pressure had a destabilising effect on the polymers in the absence of cosolvents. The molar volume change of the heat-induced helix to coil transition (Δ V T) becomes more positive as the activity of water was reduced, suggesting that the pressure-induced denaturation of DNA polymers would not occur at very low water activity. This would imply that water plays a crucial role in the pressure denaturation of DNA, much like that in pressure denaturation of proteins where the driving force of the process is the penetration of water molecules into the protein core [Hummer et al., Proc Natl Acad Sci USA 1998, 95, 1552–1555].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.