Abstract

Although seeking an effective strategy for further improving their optical properties is a great challenge, two-dimensional (2D) halide perovskites have attracted a significant amount of attention because of their performance. In this regard, the pressure-induced emission accompanied by a remarkable pressure-enhanced emission is achieved without a phase transition in 2D vacancy-ordered perovskite Cs3Bi2Cl9 nanocrystals (NCs). Note that the initial Cs3Bi2Cl9 NCs possess extremely strong electron-phonon coupling, leading to the easy annihilation of trapped excitons by the phonon. Upon compression, pressure could effectively suppress phonon-assisted nonradiative decay and give rise to an intriguing emission from "0" to "1". Both the weakened electron-phonon coupling and the relaxed halide octahedral distortion benefiting from the vacancy-ordered structure contributed to the subsequent enhanced emission. This work not only elucidates the underlying photophysical mechanism but also identifies pressure engineering as a robust means for improving their potential applications in environmentally friendly solid-state lighting at extremes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.