Abstract

With the combination of a single crystal diamond anvil cell and a polycapillary half-lens, the local structural evolution around germanium in tetrahedrally networked quartz-like α-GeO2 has been investigated using extended x-ray absorption fine structure spectroscopy of up to 14 GPa by multiple-scattering analysis method. While the first shell Ge–O bond distances show a slight contraction with increasing pressure, the third shell Ge–O bond distances are found to decrease dramatically. The sluggish lengthening of the first shell Ge–O bond distances, initiated by coordination increase from fourfold to sixfold, occurs in the 7–14 GPa range just when the third shell Ge–O bond distances fall in the region of the second shell Ge–Ge bond distances. Moreover, these features are accompanied by the closing of intertetrahedral Ge–O–Ge angles and the opening of two intratetrahedral O–Ge–O angles, whose topological configuration surprisingly exhibits a helical chirality along the c axis that is opposite to the double helices of the corner-linked GeO4 tetrahedra. These results suggest that the high-pressure phase transitions in quartz and quartz-like materials could be associated with a structural instability that is driven by the drastic collapse of the next-nearest-neighbour anion shell, which is consistent with the emergence of high-symmetry anion sublattice. Our findings provide crucial insights into the densification mechanisms of quartz-like oxides, which would have broad implications for our understanding of the metastability of various post-quartz crystalline phases and pressure-induced amorphization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.