Abstract

A high-pressure polymorph of the organic semiconductor rubrene was obtained above 6.0 GPa by hydrostatic compression of the triclinic form. In the high-pressure phase, rubrene adopts an unexpected and previously unobserved conformation, which is ca. 70 kJ/mol less stable than the planar one observed in the ambient-pressure phase and is characterized by a unique “double twisting” of the tetracene core and “scissoring” of the lateral phenyl groups, which favor the formation of C–H···π contacts. The evolution of the structure as a function of pressure is monitored and quantified by Hirshfeld surfaces analysis and calculations of lattice and intermolecular interaction energies. The isosymmetric single-crystal-to-single-crystal transition is fully reversible and is primarily driven by a reduction in molecular volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.