Abstract

Sol–gel method and high-pressure technique were associated to produce silica compacts with low porosity and doped with rhodamine 6G (R6G). Acid catalyzed solutions of tetraethyl orthosilicate mixed with dye previously dissolved in ethanol were used for the synthesis of doped silica gel. The monolith obtained was comminuted and the powder was compacted between 3.0 and 7.7 GPa, at room temperature, using a toroidal-type high-pressure chamber. Excitation–emission fluorescence spectroscopy was used to investigate the optical properties of R6G embedded in the closed pores of the silica matrix. Measurements of surface areas and pore size distribution for the powders and compacts, using the N2 isotherms were performed, showing a great reduction in surface area and porosity, after compaction. The dye entrapped in the compacted silica maintains its optical properties similar to that in ethanolic solutions, meaning that the dye is dispersed in a molecular level. Additionally, these samples are optically transparent, hard and resistant to dye leaching and to chemical attacks, being a promising material to be used in optical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call