Abstract
Rhombohedral BaTiO3 under hydrostatic pressure is investigated by first principles calculations. Our results show that just like tetragonal perovskites, as pressure increases, this material first becomes para-electric at low pressures, then transfers to another ferroelectric phase at much higher pressures. We also find a giant enhancement of piezoelectricity near the phase-transition regions, due to large atomic displacements along different directions in response to the applied pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.