Abstract
We report a joint experimental and theoretical study on high pressure structures of nanoporous mayenite (12CaO·7Al(2)O(3)). A pressure-induced amorphization was identified at ∼13 GPa by in situ high pressure x-ray experiments. The amorphous product can be decompressed to ambient conditions. Ab initio calculations reveal that the anisotropic deformations of empty cages break the crystallographic long-range orders, leading to the formation of high-pressure amorphous state. Furthermore, the deformation routes of empty cages are found fully dependent on their individual locally structural geometry relevant to the distribution of extra-framework oxygen ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.