Abstract

Osmium carbonyls are well known to form stable 18-electron complexes like Os(CO)5 , Os2 (CO)9 and Os3 (CO)12 having both bridging and terminal carbonyls. For osmium tetra-carbonyl, Os(CO)4 solid-state packing significantly alters the ground-state structure. The gas-phase stable see-saw geometry converts to a square-planar structure in solid state. Highly efficient intermolecular stacking between Os(CO)4 units assists this transformation. Each Os(CO)4 molecule is stacked in a staggered orientation with respect to each other. Pressure induces a [Xe]4f14 5d6 6s2 (S=2)→[Xe]4f14 5d8 (S=0) electronic transition in osmium stabilize a square planar osmium tetra-carbonyl. Under the influence of isotropic pressure, the molecules not only come closer to each other but their relative orientations also get significantly altered. Calculations show that at P=1 GPa and above, the eclipsed orientation for the intermolecular stacking gets preferred over the staggered form. The staggered→eclipsed intermolecular stacking orientation under pressure is shown to be controlled by London dispersion interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.