Abstract

Renewable energy is strongly recommended to replace the traditional fossil fuels to solve the severe environmental pollution. However, small hydro-turbine performs lower efficiency, and it is also easy to be blocked and impacted. Therefore, the contra-rotating rotors are adopted to overcome the disadvantages of small hydro-turbine. The performance and internal flow condition of contra-rotating small hydro-turbine have been clarified. In this paper, a new transparent casing is manufactured, and pressure fluctuation experiments are conducted. The pressure fluctuation experiments are to clarify the pressure fluctuation during the running of contra-rotating small hydro-turbine. Then the hydraulic stability of contra-rotating small hydro-turbine can be further investigated. According to the experiment results, for the new model, most of the amplitudes of pressure fluctuation are decreased. The maximum decreasing percentage of peak-to-peak value is 74.22%, and it is appeared on the point of Pr3. On frequency domain, the dominant frequencies of pressure fluctuation are rotation frequency and blade passing frequency. The investigation to tip leakage flow of contra-rotating small hydro-turbine is conducted based on the pressure fluctuation experiment and numerical simulation. The tip leakage vortex is identified by Q-criterion. The pressure distributions in tip clearance area show that the tip leakage vortex of new model is suppressed, and this helps to reduce the amplitude of pressure fluctuation in tip clearance area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.