Abstract

Disposal canisters and buffer materials are main components in an engineered barrier system designed for high-level radioactive waste disposal. The design temperature of the buffer material is below 100 °C in most countries, and many studies have been conducted to increase the design temperature of the buffer material to increase the disposal density of the repository. A 1-cm air gap exists between the canister and buffer material that can cause several variations in the thermal–hydraulic–mechanical performance of the compacted bentonite buffer material. Therefore, considering the air-gap effect under high-temperature conditions is necessary because high temperatures can cause pressure variations in the air gap and compacted bentonites. Therefore, an experimental system was developed to measure the pressure variations in a confined cell, which contained air and compacted bentonites from room temperature to 150 °C. The pressure of the confined cell increased with increasing water content of the compacted bentonite, and the pressure changes were similar up to 100 °C irrespective of the presence of the 1-cm air gaps. Moreover, the pressure values at 150 °C were 10–15% higher in samples without gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.