Abstract

AbstractWe have measured the effects of hydrostatic pressure on the solid phase epitaxial growth (SPEG) rates of undoped Ge(100) and Si(100) into their respective self-implanted amorphous phases. We found that pressure enhances the growth process in both Si and Ge, with activation volumes equal to -3.3 ± 0.3 cm3/mole for Si and -6.3 ± 0.60 cm3/mole for Ge. The results of this and other experiments are inconsistent with all bulk point-defect mechanisms, but are consistent with all interface point-defect mechanisms, proposed to date for thermal SPEG. A kinetic analysis of the Spaepen-Turnbull dangling bond mechanism shows it to be a highly plausible model for the growth process.

Highlights

  • This article was downloaded from Harvard University's DASH repository

  • Materials Research Society Symposia Proceedings 205: 33-38

Read more

Summary

Introduction

The Harvard community has made this article openly available.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.