Abstract

In this work, compared with the corresponding pure CsPbCl3 nanocrystals (NCs) and Mn2+-doped CsPbCl3 NCs, Mn2+/Cu2+-codoped CsPbCl3 NCs exhibited improved photoluminescence (PL) and photoluminescence quantum yields (PL QYs) (57.6%), prolonged PL lifetimes (1.78 ms), and enhanced thermal endurance (523 K) as a result of efficient Mn2+ doping (3.66%) induced by the addition of CuCl2. Furthermore, we applied pressure on Mn2+/Cu2+-codoped CsPbCl3 NCs to reveal that a red shift of photoluminescence followed by a blue shift was caused by band gap evolution and related to the structural phase transition from cubic to orthorhombic. Moreover, we also found that under the preheating condition of 523 K, such phase transition exhibited obvious morphological invariance, accompanied by significantly enhanced conductivity. The pressure applied to the products treated with high temperature enlarged the electrical difference and easily intensified the interface by closer packaging. Interestingly, defect-triggered mixed ionic and electronic conducting (MIEC) was observed in annealed NCs when the applied pressure was 2.9 GPa. The pressure-dependent ionic conduction was closely related to local nanocrystal amorphization and increased deviatoric stress, as clearly described by in situ impedance spectra. Finally, retrieved products exhibited better conductivity (improved by 5-6 times) and enhanced photoelectric response than those when pressure was not applied. Our findings not only reveal the pressure-tuned optical and electrical properties via structural progression but also open up the promising exploration of more amorphous all-inorganic CsPbX3-based photoelectric applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.