Abstract
We investigate the pressure effects on the transitions between the disordered phases in supercooled liquid silicon through Monte Carlo simulations and efficient methods to compute free energies. Our calculations, using an environment dependent interatomic potential for Si, indicate that at zero pressure the liquid-liquid phase transition, between the high density liquid and the low density liquid, occurs at a temperature 325K below melting. We found that the liquid-liquid transition temperature decreases with increasing pressure, following the liquid-solid coexistence curve. As pressure increases, the liquid-liquid coexistence curve approaches the region where the glass transition between the low density liquid and the low density amorphous takes place. Above 5 GPa, our calculations show that the liquid-liquid transition is suppressed by the glassy dynamics of the system. We also found that above 5 GPa, the glass transition temperature is lower than that at lower pressures, suggesting that under these conditions the glass transition occurs between the high density liquid and the high density amorphous.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.