Abstract

Abstract Polymers have large bulk compressibility in the molten state /1/ and their rheological properties are largely affected by pressure applied in polymer processing. The volumetric strain induced by pressure consists of instantaneous and retarded elastic strains, both of which are proportional to pressure, and recover reversibly when pressure is removed. In many crystalline polymers, as observed by B. Maxwell for polyethylene, retarded elastic strain is large, and due mostly to pressure crystallization. This paper describes results of experimental studies relating pressure effects on rheological properties of melt polymers with polymer processing and bulk properties of products. The following items are discussed: pressure induced shear stress, analysis of local deformation pattern, critical shear stress for melt flow fracture, relationship between power law index and bulk compressibility, effects of hydrostatic pressure on melt flow behavior, pressure efficiency of injection molding, jetting phenomena, shrinkage in injection moldings, residual strain, and super-high-pressure injection molding process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.