Abstract

This paper explores the effects of pressure on the interfacial surface contacts and the performance of organic solar cells. A combination of experimental techniques and analytical/computational models is used to study the evolving surface contacts profiles that occur when compliant, semi-rigid and rigid particles are interlocked between adjacent layers in model solar cell structures. The effects of layer surface roughness and interlocked (trapped) particles are also considered along with the effects of surface energy, adhesion energy, and pressure. The results show that increased interfacial contact lengths and decreased void lengths are associated with the application of increased pressure. Increased pressure also results in significant improvements in power conversion efficiency. These improvements in power conversion efficiency are associated with the closure up of micro- and nano-voids due to the application of pressure to layers produced via spin coating and thermal evaporation. The results suggest that pressure-induced contacts can be used to enhance the performance of organic solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.