Abstract

The crystal structure of [Fe(bt)2(NCS)2] (A) was determined by X-ray diffraction at 293 and at 150 K in order to analyze the structural changes associated with the spin transition. The space group is P1 with Z = 2 at both temperatures. Lattice constants are as follows: a = 8.5240(4), b = 11.0730(6), c = 12.5300(8) at 293 K and a = 8.1490(4), b = 11.4390(5), c = 12.1270(6) at 150 K. The iron(II) atom lies at the center of a distorted [FeN6] defined by two bt ligands arranged in a cis conformation. The two remaining coordination positions are occupied by two isothiocyanate anions. The average bond lengths of 2.159(4) A (293 K) and 1.951(2) A (150 K) clearly indicate the change in spin configuration. The trigonal distortion parameter phi has a value of 9.6 degrees and 5.5 degrees at 293 and 150 K, respectively. For A, DeltaV = DeltaV(SCO) = 28 A(3) per formula unit and is accompanied by a hysteresis of 10 K. chi(M)T vs T curves at atmospheric pressure for A show an abrupt spin transition with Tc downward arrow = 176 K and Tc upward arrow = 187 K. The thermodynamic parameters associated with the spin transition are DeltaH = 8.4 +/- 0.4 kJ mol(-1) and DeltaS = 46.5 +/- 3 J K mol(-1). The thermal dependence of the magnetic susceptibility at different pressures, 0.1-0.91 GPa, points out an unusual behavior, which can only be understood in terms of a crystallographic phase transition or a change in the bulk modulus of the complex. Polymorph B crystallizes in the C2/c space group with an average Fe-N bond length of 2.168(2) A and phi = 14.7 degrees at 293 K. B remains in the HS configuration even at pressures of 1.06 GPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call