Abstract

A two-dimensional numerical mesoscale model is used to determine the pressure drag of sinoidal mountains and valleys in a neutral atmosphere. In the first part, pressure distributions and flow patterns for isolated obstacles are considered. For large aspect ratios, the pressure drag exerted by valleys becomes small compared to that of mountains. In the second part, interactions between several obstacles are investigated. For mountains, the drag on downstream obstacles is reduced considerably by the first obstacle when the obstacles are close together. For valleys there is a slight increase of the average drag exerted by each obstacle. In the limit for a large number of obstacles, average drag exerted by one mountain is equal to average drag for one valley. For smaller aspect ratios, this average drag can be entered into the resistence law from the Rossby number similarity theory to yield an ‘effective roughness length’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.