Abstract

Traumata or repetitive microtraumata, malalignment with varus or valgus deviation, or chronic joint instability are discussed in the aetiology of osteoarthritis and osteochondritis dissecans of the knee. Biomechanical factors influencing the patterns of pressure distribution at the articular surface and the subchondral bone are suggested to be most important in the pathogenesis. Consequently, the patterns of pressure distribution at the femoral condyles of weight-bearing knee joints were investigated in a cadaveric biostatic model. The pressure in the articular joint space was evaluated with pressure-sensitive films of the knee in different joint positions in the coronal plane (10 degrees varus, 10 degrees valgus, and neutral position) without and with medial collateral ligament (MCL), lateral CL (LCL), MCL + anterior cruciate ligament (ACL) or LCL + ACL ligament division. Results demonstrated that the location of the contact area and the peak pressure depended on the joint position and stage of ligamentous division. Without ligament division, a maximum peak pressure was observed at the medial condyle in the neutral and varus positions. Only in the valgus position did the lateral condyle show a higher peak of pressure than the medial condyle. Ligament division of the LCL and LCL + ACL resulted in an increase of peak pressure at the medial condyle, particularly in the varus position. Division of the MCL and MCL + ACL ligament complex reduced the differences between the medial and lateral condyle. In the valgus position, the peak pressure was significantly higher at the lateral condyle. The absolute maximum peak pressure was measured in the varus position at the medial condyle after division of the LCL and ACL.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call