Abstract
The effect of pressure on viscosity is an important but often overlooked aspect of the flow properties of polymeric materials. In this work, two polymers (an atactic and a syndiotactic Polystyrene) were characterized to determine the effect of pressure on viscosity. In particular, a device was adopted to increase the exit pressure of a standard capillary rheometer, thus obtaining data of viscosity under high pressure and high shear rates. The Simha-Somcynsky equation of state was applied to the pressure–volume–temperature experimental data of both materials to obtain the dependence of free volume on temperature and pressure. The Doolittle equation was eventually employed to verify the dependence of viscosity on free volume. It was found that, for both materials, a linear relationship holds between the logarithm of zero-shear-rate viscosity (at several temperatures and pressures) and the inverse of free volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.