Abstract
In this letter, we report our theoretical study on pressure-dependent interfacial charge transfer excitons in WSe2-MoSe2 van der Waals heterostructures in near infrared region (NIR). It is found that pressure can control not only the degree of interfacial charge transfer, but also the orientation of interfacial charge transfer in 2D heterostructures. Pressure can efficiently promote the separation of interfacial charge transfer between two layers of the heterostructures. The variation of pressure results in the changing of band gap, the effective mass, as well as the intrinsic carrier concentration in WSe2-MoSe2 van der Waals heterostructures. The pressure-induced red shifted for interfacial charge transfer excitons is also obtained. Furthermore, the reason why pressure results in fluorescence quenching is strong van der Waals interactions. This discovery will provide a new method for reversible non-destructive control of the electrical properties of two-dimensional semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.