Abstract

The pressure dependence of the Raman spectra of phase-pure InSe thin films prepared by the low-pressure metal-organic chemical vapor deposition technique has been studied using a diamond-anvil high-pressure cell. Enhancement in the intensities of the Raman modes has been observed as a result of pressure-induced ``tuning'' of the energy of the ${M}_{1}$-type hyperbolic exciton in InSe at $\ensuremath{\sim}2.54\mathrm{eV}$ through discrete incident laser photon energies. The pressure coefficients of the phonon modes and of the hyperbolic exciton in InSe have been determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.